Hardware and Software for Instructional Development

1

Math Instruction: Higher Order Thinking Skills and Programming

Transformation of High School Mathematics Curriculum

Through Use of the Open Source

Programming Software Applications

Scratch© and Alice©
Tracy Ann Hardin

University of Maryland University College

Stateside

Scholarly Research for EDTC 625

Dr. Michael Ruffini
November 27, 2009
Abstract

The focus of this research is the transformative effect of open source programming software upon mathematics curriculum. To demonstrate this effect, two specific software applications will be introduced along with brief explanations of their function and potential use in the classroom. Pedagogical aspects of mathematics instruction with a focus on constructivism will also be presented. An explanation of the advantages of utilizing programming software in general will be given. Specific application within the mathematics classroom will also be discussed. Limitations of the subject open source software are included. A concluding section presents a forward thinking ideal application scenario for transforming high school mathematics curriculum through the use of open source programming software.

Math Instruction: Higher Order Thinking Skills and Programming
Since the dawn of the new millennium, technology in the mathematics classroom has evolved from what was once considered an option to a necessary component. Within a technology saturated world, there exists an untapped resource to greatly increase the ability to promote higher order thinking skills in the mathematics classroom. This resource is open source programming tools such as Scratch© and Alice©.
The National Council of Teachers of Mathematics expresses an “… emphasis should be on establishing a climate that places critical thinking at the heart of instruction” (Offer, J., 2009). Using technology in the mathematics classroom indeed encourages “. . . higher-order thinking by providing the tools for exploration and discovery” (Drickey, N., 2006). Tools in mathematics such as algorithms and basic problem solving are the foundation concepts of programming languages.

Technology is not the sole addition to the contemporary mathematics classroom, since constructivist pedagogy has become the preferred mode of delivery of instruction. Within constructivism, technology operates well as a tool to create cooperative, student-centered learning experiences. In mathematics classes in particular, problem solving can be performed through collaborative projects. The subject programming software will be presented as an ideal resource for implementing problem solving skills in the high school mathematics classroom.
Description of Software
Though Scratch© and Alice© are both open source programming tools, these software resources do not operate in exactly the same way. Scratch© and Alice© both allow users to create animations, while Scratch © animations are two-dimensional and Alice animations are three-dimensional. Though each of these programs is unique, both may be utilized in the transformation of high school mathematics curriculum.

Scratch

Scratch may be accessed and downloaded for free from scratch.mit.edu. It was developed by the Massachusetts Institute of Technology
‘. . . to help young people (ages 8 and up) develop 21st century learning skills. As they create and share Scratch projects, young people learn important mathematical and computational ideas, while also learning to think creatively, reason systematically, and work collaboratively” (MIT, 2009).
Based on this author’s personal experience with the program, students can create two dimensional animations using provided drag and drop commands which fit together like puzzle pieces, such as the purple sections in the left side of the screenshot in Figure 1 to follow. The space where users create the animation includes these scripts which are colored based on their individual function such as looks, motion, control or sound (MIT, 2009). Users can pick backgrounds for their project from included libraries or create their own unique backgrounds and import them into their projects. Characters within the project are called “sprites,” and the default sprite is a yellow cat. Other characters can replace the default and can also be chosen from a library or created and imported. The drag and drop scripts are added to the project to manipulate the characters and scenes the users create. As users gain experience, video and more advanced programming options can be utilized (MIT, 2009).
[image: image1.png]5 H D File edit share Help

Figure 1 (MIT, 2009)
Hardware Specifications

Minimum hardware specifications for Scratch are as follows:
Operating System:
· Windows 2000 or later (Win 98 for Scratch 1.2.1)

· Mac OS X 10.4 or later (Mac OS X 10.3 for Scratch 1.2.1)

Display:
 1024 x 768 or larger, thousands or millions of colors (16-bit color or greater)

Disk:
· At least 120 megabytes of free space to install Scratch

· The CPU speed and memory are low, but may run slow on older units

Other Hardware:

· Speakers (or headphones)

· Microphone

Alice
Developers at Carnegie Mellon University designed Alice© Programming Software with the goal of creating a fun and engaging venue to introduce students to basic programming concepts in hopes of increasing enrollment and retention in the field of Computer Science (Computer science enrollment increases, 2009). Like Scratch ©, Alice© is available for free download at alice.org. The program requires considerably more space and memory than Scratch©. Even the most computer savvy student may initially consider programming with Alice© a daunting task. Designers specifically created Alice© to overcome any anxiety inherent in such a complicated topic as programming through the use of drag-and-drop script commands, an eye-catching, vibrant display and logical layout. Tutorials are easy to follow, age appropriate and optional FAQ links, textbook accompaniments, user forums and support are also offered.

Compared to Scratch©, Alice© programming options are more advanced. Animations created in Scratch© are two dimensional while those created in Alice© are three dimensional. Still, Alice© creations utilize the same drag and drop puzzle piece script design as Scratch©. Though this drag and drop option makes Alice© relatively easy to use, the processes used in creating the animations provide the basis for higher order thinking. Alice programmers apply algorithmic problem solving processes in building animations. In Alice©, students learn new vocabulary such as worlds, methods, and events (http://alice.org, 2009). As noted in Figure 2 to follow, the screen is the authoring environment, and the user is designing a world. The term object in Alice© would be equivalent to a sprite in Scratch©. The terms method and event in Alice© are similar to the motion and control tools in Scratch©.
[image: image2.png]N I,

Figure 2: The Alice Authoring Environment (opening scene tab).
() The Add Object button presents a gallery of 3D objects. (B) The
Object Tree, a PHIGS-like tree of hierarchical objects (C) Camera
controls allow the user to drive around the Scene. (D) The Undo
button provides infinite animated undo. (E) The Alice Command Box
for evaluating single lines of Alice script. (F) The Scrpt tab reveals a
simple text editor where the user writes scripts that control the
objects in the scene.

(Carnegie Mellon, 2009)

Hardware Specifications
Minimum hardware specifications for Alice are as follows: System Requirements:

Operating System:
· Windows 7, Vista, XP, or 2000
· Mac OS X 10.4 or later
Display:
· A VGA graphics card capable of high (16 bit) color and 1024x768 resolution

· 3D video card recommended

Disk:
· Intel Pentium II or equivalent processor
· 512MB of RAM (1GB recommended
Other Hardware:

· Speakers (or headphones)
· Microphone

Pedagogical Considerations

The guiding principles of contemporary pedagogy which lead to successful instructional development and improvement necessitate the use of technology and the implementation of constructivist or socio-constructivist practices in the classroom. A “. . . form of socio-constructivism can be defined as an approach according to which individual knowledge relies on its social construction of it” (Schneider, D. 2009). Technology plays an important role in allowing the social construction of mathematical knowledge. “The teaching/learning process is fueled by the exchange of information between collaborating students. . .” through technology (Bergandy, J., 2009).
	Criteria
	Ordinary vs. Innovative

	Constructiveness
	Teaching does not pay much attention to how the subject matter is integrated in the existing knowledge structures of the student
	Teaching and learning are clearly based on the learners active construction process and on the creation of higher level knowledge structures

	Activeness
	Learning environment does not support nor require the learner's own active role in the learning process
	Learning environment is based on the learner's active role and commitment

	Cooperativeness
	Learning takes place mainly alone
	Learning is based on cooperative and collaborative principles and takes place in groups

	Contextuality
	Learning takes place in an institution and/or is separated from the concrete situation of application of the knowledge
	Learning takes place in a simulated or real-life situation, which equals the actual context where the knowledge will be applied

	Problem based
	Study objectives are based on study subjects in a traditional way, and cut into separate units in the curriculum
	Learning approach is problem based and investigative

Figure 3 (Schneider, D., 2009).
The table in Figure 3 compares “ordinary” traditional teaching practices to “innovative” constructivist practices. If students use programming software in the classroom, constructiveness is demonstrated as they build scenes and animations. Activeness is also shown since students are not merely observers but participants in the learning which results from creating projects with programming software tools. If the creation of animations is developed within pairs or small groups, cooperativeness is utilized. In creating an animation, a simulation of sorts is made which exemplifies contextuality. Finally, programming tools allow students to solve problems when developing a functional scene or sequence, making it a problem based activity.
According to the above descriptions of programming software in the classroom, such technology tools can be used for successful instructional development and improvement within the realm of constructivist practices. The utilization of programming software to further constructivist goals demonstrates other possible advantages of using this technology tool in the classroom.
Advantages of Programming Skills

Valuable skills can be learned from using programming software applications such as Alice© and Scratch© including problem solving, higher order thinking as well as collaborative abilities.
While students are creating with a program such as Alice© or Scratch©, they are not only learning the rules for creating the project, they are also learning problem solving skills, utilizing algorithmic processes and ultimately laying the foundation for programming skills in the future. The late Randy Pausch, author of “The Last Lecture,” calls “Encouraging students to learn one thing while they believe they are learning something else,” a “head fake” (Dann, W., & Cooper, S. 2009). This head fake is keeping the students from hyper-focusing on the relative difficulty of the task at hand and instead, they are effortlessly creating. In doing this, students are more likely to “. . . gain capability in computational thinking abilities” (Dann, W., & Cooper, S. 2009). The Dann & Cooper article was based on the premise that students’ learning is “. . .usually from the concrete to the abstract” (Dann, W., & Cooper, S. 2009) . In the case of using programming software in the classroom, the concrete involves the steps used in creating the animation itself while the abstract involves higher order thinking skills such as “sequence, conditionals, Boolean expressions, repetition, and even concurrent execution” (Dann, W., & Cooper, S. (2009).
A 2006 article in the Journal of Educational Computing Research, studied the effect of students using Alice programming software in pairs on their overall level of confidence, enjoyment and achievement in class. The study showed working in pairs on projects and learning collaboratively was a distinct advantage, and “. . . having a partner with whom to reason through the program, increases student satisfaction and fosters positive attitudes” (Bishop-Clark, C., et al 2007).
The use of programming software encourages the development of desirable skills such as problem solving, higher order thinking and collaboration in general and also contributes to the progress of other skills relevant in the mathematics classroom specifically.

Programming in the Mathematics Classroom

Many mathematics classes may have traditionally been teacher-centered classes filled with lectures, note-taking and individual problem solving. The paradigm shift toward a constructivist, student-centered classroom lends itself well to the use of programming software for collaborative project-based learning activities. A study presented at a conference on the Psychology of Mathematics and Education supported a mathematics classroom environment which was “. . . highly dynamic and supported broad-based participation by a range of learners” (Hand, V., et al, 2007). Within this classroom, students were more motivated when learning cooperatively and completing problem solving activities rather than they were traditional methods. Further, “. . . priority was given to helping students who struggled in mathematics build stronger relationships both with each other and mathematics” (Hand, V., et al, 2007).

Many students struggle with mathematics when they reach the high school level and including technology and project-based learning in the curriculum may very well address this problem. In an article dealing specifically with curriculum standards, it states “Mathematical problem solving calls for reflective thinking, persistence,” and “…learning ideas from others” (Bergandy, J., & Davidson, C. 2009). All of these skills necessary for mathematical problem solving can be taught using programming software tools such as Scratch© and Alice© in the mathematics classroom.
Limitations

Though a numerous advantages of using Scratch© or Alice© programming software in the mathematics classroom have been presented, there are also some limitations. The main limitations have to do with feasibility and execution of the instruction.

This author’s personal experience in the mathematics classroom reveals core classes such as mathematics do not always have access to computer laboratories on a consistent basis if at all. Often mathematics classrooms have only a few student stations which would most likely not meet minimum hardware and software conditions necessary to load Scratch©, let alone Alice© which requires for greater storage and processor capabilities.

The execution of instruction by both qualified and willing teachers can also be an impediment to the implementation of programming software in the mathematics classroom. At times, teachers resist the implementation of innovative instruction even if the appropriate resources were available. Professional development opportunities may not be taken advantage of when offered since programming software is not necessarily directly related to the standards to be covered. (Drickey, N. 2006).

Recommendations

Technology in the mathematics classroom is indeed an essential component used to deliver instruction which will prepare students for post secondary experiences in college or the work force. Programming software such as Scratch© and Alice© are technology tools which studies have shown to be beneficial to students in developing skills in problem solving, higher order thinking and collaboration. Concepts of programming software align well with mathematical concepts some as algorithms and problem solving in general.
When students work cooperatively to create and launch animations in programs like Scratch© and Alice©, they are also learning valuable life skills. Processes students learn in programming animations, align with skills necessary to be successful in mathematics in general. If programming software were used in the classroom, it would be advisable to start with a less complicated version such as Scratch© and once students master techniques in this program, transition to Alice© would be appropriate.
Limitations such as equipment availability and teachers’ willingness to adapt to change could impede efforts to use innovative instructional tools such as open source programming software. To address this limitation, it is helpful to acknowledge the part assessment plays in reforming mathematics curriculum. Instructors who endeavor to “teach to the test” may find the use of programming software serves to “…enhance the problem solving skills of their charges” (Offer, J., & Bos, B. 2009). If improved test scores result from advanced problem solving skills obtained from innovative programming software applications, perhaps teachers will find value in the innovation and be prompted to implement it in their classroom.

If instructors are indeed moving in unison with the paradigm shift to constructivism, the benefit of collaborative, student-centered instruction cannot be ignored. If students “…from diverse backgrounds introduce different forms of participation into the mathematics classroom, the norms for what it means to do mathematics in the classroom may shift as well” (Hand, V., et al, 2007). To appropriately address the needs of their students, teachers will have to construct new “norms” which employ free, open source software resources which will in turn develop skills in problem solving, higher order thinking and collaboration amongst their students. Should teachers take on this task, high school mathematics curriculum will be transformed through the use of the open source programming software applications, Scratch© and Alice©.
References

Bergandy, J., & Davidson, C. (2009). Addressing curriculum standards in teaching analytical and problem solving skills in K-12 classrooms using unified modeling language (UML). International Journal of Learning, 15(12), 95-103. Retrieved from http://ezproxy.umuc.edu/login?url=http://search.ebscohost.com.ezproxy.umuc.edu/login.aspx?direct=true&db=ehh&AN=40825482&loginpage=login.asp&site=ehost-live&scope=site

Bishop-Clark, C., Courte, J., Evans, D., & Howard, E. V. (2007). A quantitative and qualitative investigation of using alice programming to improve confidence, enjoyment and achievement among non-majors. Journal of Educational Computing Research, 37(2), 193-207. Retrieved from http://search.ebscohost.com.ezproxy.umuc.edu/login.aspx?direct=true&db=iih&AN=26369493&loginpage=login.asp&site=ehost-live&scope=site

BISHOP-CLARK, C., COURTE, J., & HOWARD, E. V. (2006). Programming in pairs with alice to improve confidence, enjoyment, and achievement. Journal of Educational Computing Research, 34(2), 213-228. Retrieved from http://ezproxy.umuc.edu/login?url=http://search.ebscohost.com.ezproxy.umuc.edu/login.aspx?direct=true&db=ehh&AN=22606939&loginpage=login.asp&site=ehost-live&scope=site

Carnegie Mellon University, (2009, November 27). About Alice. Retrieved from http://alice.org

Computer science enrollment increases.(2009). Communications of the ACM, 52(5), 17-17. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&db=iih&AN=39362995&loginpage=login.asp&site=ehost-live&scope=site
Dann, W., & Cooper, S. (2009). Education alice 3: Concrete to abstract. Communications of the ACM, 52(8), 27-29. Retrieved from http://ezproxy.umuc.edu/login?url=http://search.ebscohost.com.ezproxy.umuc.edu/login.aspx?direct=true&db=a9h&AN=43479956&loginpage=login.asp&site=ehost-live&scope=site

Drickey, N. (2006). Learning technologies for enhancing student understanding of mathematics. International Journal of Learning, 13(5), 109-116. Retrieved from http://ezproxy.umuc.edu/login?url=http://search.ebscohost.com.ezproxy.umuc.edu/login.aspx?direct=true&db=ehh&AN=24978635&loginpage=Login.asp&site=ehost-live&scope=site

Hand, V. M., Williams, C., & DeAnda, P. (2007). "What counts as mathematical activity and who decides?": The discourse of mathematics in mathematics education. Conference Papers -- Psychology of Mathematics & Education of North America, , 1-158. Retrieved from http://ezproxy.umuc.edu/login?url=http://search.ebscohost.com.ezproxy.umuc.edu/login.aspx?direct=true&db=ehh&AN=42980656&loginpage=Login.asp&site=ehost-live&scope=site

MIT, (2009, November 27). About Scratch. Retrieved from http://info.scratch.mit.edu/About_Scratch
Offer, J., & Bos, B. (2009). The design and application of technology-based courses in the mathematics classroom. Computers & Education, 53(4), 1133-1137. doi:10.1016/j.compedu.2009.05.020
Schneider, D. (2009). Edutec Wiki. Tecfa portal - university of geneva. Retrieved (2009, November 27) from http://tecfa.unige.ch/
